Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.514687
Title: Matrix converter for frequency changing power supply applications
Author: Lopez Arevalo, Saul
Awarding Body: University of Nottingham
Current Institution: University of Nottingham
Date of Award: 2008
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
The purpose of this work is to investigate the design and implementation of a 7.5kVA Matrix Converter-based power supply for aircraft applications (GPU Ground Power Unit). A Matlab/Simulink as well as SABER simulation analysis of the candidate Matrix Converter system is provided. The design and implementation of the Matrix Converter is described, with particular attention to the strict requirements of the given power supply application. This AC-AC system is proposed as an effective replacement for the conventional AC-DC-AC system which employs a two-step power conversion. The Matrix Converter is an attractive topology of power converter for power supply applications where factors such as the absence of electrolytic capacitors, the potentiality of increasing power density, reducing size and weight and good input power quality are fundamental. An improved control structure is proposed. This structure employs an ABC reference frame implementation comprising at the Repetitive Control strategy combined with a traditional tracking controller in order to attenuate or eliminate the unwanted harmonic distortion in the output voltage waveform of the Matrix Converter and to compensate for the steady-state error. The system with the proposed control was initially fully analyzed and verified by simulation. The analysis of the input and output waveforms identified the constraints that need to be satisfied to ensure successful operation of the converter. Finally, to demonstrate both the Matrix Converter concept and the control strategy proposed, a 7.5kVA prototype of the proposed system was constructed and tested in Nottingham PEMC laboratory. The experimental results obtained confirmed the expectations from the simulation study and the validity of the power converter and control design.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.514687  DOI: Not available
Keywords: TK7800 Electronics
Share: