Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.513473
Title: Modelling and control of coupled infinite-dimensional systems
Author: Zhao, Xiaowei
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2009
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
First, we consider two classes of coupled systems consisting of an infinite-dimensional part [sigma]d and a finite-dimensional part [sigma]f connected in feedback. In the first class of coupled systems, we assume that the feedthrough matrix of [sigma]f is 0 and that [sigma]d is such that it becomes well-posed and strictly proper when connected in cascade with an integrator. Under several assumptions, we derive well-posedness, regularity and exact (or approximate) controllability results for such systems on a subspace of the natural product state space. In the second class of coupled systems, [sigma]f has an invertible first component in its feedthrough matrix while [sigma]d is well-posed and strictly proper. Under similar assumptions, we obtain well-posedness, regularity and exact (or approximate) controllability results as well as exact (or approximate) observability results for this class of coupled systems on the natural state space. Second, we investigate the exact controllability of the SCOLE (NASA Spacecraft Control Laboratory Experiment) model. Using our theory for the first class of coupled systems, we show that the uniform SCOLE model is well-posed, regular and exactly controllable in arbitrarily short time when using a certain smoother state space. Third, we investigate the suppression of the vibrations of a wind turbine tower using colocated feedback to achieve strong stability. We decompose the system into a non-uniform SCOLE model describing the vibrations in the plane of the turbine axis, and another model consisting of a non-uniform SCOLE system coupled with a two-mass drive-train model (with gearbox), in the plane of the turbine blades. We show the strong stabilizability of the first tower model by colocated static output feedback. We also prove the generic exact controllability of the second tower model on a smoother state space using our theory for the second class of coupled systems, and show its generic strong stabilizability on the energy state space by colocated feedback.
Supervisor: Weiss, George Sponsor: EPSRC ; ORSAS
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.513473  DOI: Not available
Share: