Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.512714
Title: Water ingestion effects on gas turbine engine performance
Author: Nikolaidis, Theoklis
Awarding Body: Cranfield University
Current Institution: Cranfield University
Date of Award: 2008
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Although gas turbine engines are designed to use dry air as the working fluid, the great demand over the last decades for air travel at several altitudes and speeds has increased aircraft’s exposure to inclement weather conditions. Although, they are required to perform safely under the effect of various meteorological phenomena, in which air entering the engine contains water, several incidents have been reported to the aviation authorities about power loss during flight at inclement weather. It was understood that the rain ingestion into a gas turbine engine influences the performance of the engine and particular the compressor and the combustor. The effects of water ingestion on gas turbine engines are aerodynamic, thermodynamic and mechanical. These effects occur simultaneously and affect each other. Considering the above effects and the fact that they are timedependent, there are few gas turbine performance simulation tools, which take into account the water ingestion phenomenon. This study is a new research of investigating theoretically the water ingestion effects on a gas turbine performance. It focuses on the aerodynamic and mechanical effects of the phenomenon on the compressor and the combustor. The application of Computational Fluid Dynamics (CFD) is the basic methodology to examine the details of the flow in an axial compressor and how it is affected by the presence of water. The calculations of water film thickness, which is formed on the rotor blade, its motion (direction and speed) and the extra torque demand, are provided by a code created by the author using FORTRAN programming language. Considering the change in blade’s profile and the wavy characteristics of the liquid film, the compressor’s performance deterioration is calculated. The compressor and combustor’s deterioration data are imported to a gas turbine simulation code, which is upgraded to calculate overall engine’s performance deterioration. The results show a considerable alteration in engine’s performance parameters and arrive at the same conclusions with the relevant experimental observations.
Supervisor: Pilidis, Pericles Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.512714  DOI: Not available
Keywords: Simulation ; Adverse Weather ; Film ; Deterioration ; Rain
Share: