Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.512462
Title: Development of multi-component iron-based amorphous alloy
Author: Squire, Peter James
Awarding Body: University of Birmingham
Current Institution: University of Birmingham
Date of Award: 2009
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
This present study is concerned with developing a new alloy system which is capable of forming a metallic glass on rapid solidification of the melt, rather than modifying a known glass forming composition, and assessing its glass forming ability. Iron (Fe) was chosen as the solvent element because it is significantly cheaper than the base elements found in some other metallic glasses and does not require the addition of large quantities of expensive alloying elements to enable vitrification. A ternary system using carbon (C) and boron (B) was studied initially as these metalloids are known to aid glass formation in other systems. Manganese and molybdenum were selected as secondary alloying additions in order to determine if they would have an effect on the Fe-C-B alloy with the best glass forming ability. A combination of optical microscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffractometry and secondary ion mass spectroscopy was used to investigate the microstructure of as-cast and rapidly solidified alloys. Differential scanning calorimetry (DSC) was used to investigate the thermal behaviour of the alloys. The ability of the iron-based alloys to form a glass on rapid solidification from the melt could not be predicted by observation of the as-cast microstructure or through computational methods. It was found that vitrification of the ternary system was only possible for compositions which were close to a eutectic point and that stabilisation of the supercooled liquid was caused by competition for nucleation between austenite and metastable phases, rather than between primary equilibrium solidification products. Of the ternary compositions where an amorphous phase was produced it was concluded that Fe₈₀.₉C₅B₁₄.₁ had the best glass forming ability (GFA). It was determined that the addition of manganese and/or molybdenum to the base composition generally had the effect of improving the GFA through the increased complexity of the system making it more difficult for recrystallisation to occur. Of the multi-component alloys it was concluded that Fe₆₀.₉Mn₁₀Mo₁₀C₅B₁₄.₁ had the best GFA as it had the highest values for each of the parameters used to describe GFA. It is believed that this is due to competition between the austenite and alpha stabilisers (manganese and molybdenum respectively) causing enhanced stability of the supercooled liquid.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.512462  DOI: Not available
Keywords: TN Mining engineering. Metallurgy
Share: