Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.509928
Title: Perisomatic-targeting interneurons control the initiation of hippocampal population bursts
Author: Ellender, Tommas Jan
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2009
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Replay of spike sequences can be seen during sharp wave – ripple population burst activity in the hippocampus. It is thought that this activity, which occurs during rest and sleep, is involved in memory consolidation. The cellular mechanisms underlying the initiation of these replay events are not well understood. To investigate this, a hippocampal slice model, showing spontaneous sharp wave – ripple activity, and a combination of planar multi-electrode array recordings and whole-cell patch-clamp recordings of anatomically identified hippocampal neurons were used. Firstly, the spatial and temporal profile of sharp waves in vitro was analysed in detail. Sharp waves were generated by changing subpopulations of pyramidal neurons in the CA3 region and had characteristics similar to those found in vivo. Secondly, four major receptor types present in hippocampal CA3, namely NMDA, AMPA, GABAA and GABAB receptors, were investigated for their involvement in sharp wave generation. Surprisingly, not only AMPA receptor-mediated events, but also phasic GABAA receptor-mediated inhibition, were necessary for sharp wave generation. Thirdly, single perisomatic-targeting interneurons were activated. This experiment showed that induced spiking activity of an individual perisomatic-targeting interneuron can both suppress and subsequently enhance local sharp wave generation. Spiking activity of other neuron types (i.e. pyramidal neurons, dendritic-targeting interneurons and interneuron-selective interneurons) had no significant effect on sharp wave incidence. Finally, it is suggested that this post-inhibitory enhancement of sharp wave generation can be mediated by a transient increase in the ratio of excitation to inhibition in the local network. In conclusion, these results suggest a new role for perisomatic-targeting interneurons in controlling the local initiation of sharp waves by selectively suppressing and subsequently enhancing recruitment of a subpopulation of pyramidal neurons. These results further imply that interneurons may play an integral part in the local information processing that takes place in the hippocampal network.
Supervisor: Paulsen, Ole ; Csicsvari, Jozsef Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.509928  DOI: Not available
Keywords: Neuroscience ; Epilepsy ; Cellular neuroscience ; sharp waves ; ripple oscillations ; hippocampus ; interneurons ; population bursting ; inhibition
Share: