Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.507838
Title: The design and implementation of a multi-agent architecture to increase coordination efficiency in multi-AUV operations
Author: Sotzing, Christopher Carson
Awarding Body: Heriot-Watt University
Current Institution: Heriot-Watt University
Date of Award: 2009
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
This research addresses the problem of coordinating multiple autonomous underwater vehicle (AUV) operations. An intelligent mission executive has been created that uses multi-agent technology to control and coordinate multiple AUVs in communication deficient environments. By incorporating real time vehicle prediction, blackboardbased hierarchical mission plans and mission optimisation in conjunction with a simple broadcast communication system this system aims to handle the limitations inherent in underwater operations and intelligently control multiple vehicles. In this research efficiency is evaluated and then compared to the current state of the art in multiple AUV control. The research is then validated in real AUV coordination trials. Results will show that compared to the state of the art the control system developed and implemented in this research coordinates multiple vehicles more efficiently and is able to function in a range of poor communication environments. These findings are supported by in water validation trials with heterogeneous AUVs. This thesis will first present an in depth state of the art of the related research topics including multi-agent systems, collaborative robotics and autonomous underwater vehicles. The development and functionality of this research will then be explained followed by a detailed description of the experiments. Results are then presented both for the simulated and real world trials followed by a discussion of the findings.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.507838  DOI: Not available
Share: