Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.507386
Title: Focussed microwave heating using degenerate and non-degenerate cavity modes
Author: Sinclair, Keith Ian
Awarding Body: Heriot-Watt University
Current Institution: Heriot-Watt University
Date of Award: 2009
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
Microwave ovens have long been recognised as a means of reducing heating times versus conventional convection ovens. The principle design feature is based on the procurement of uniform heating within any material placed in the interior of the microwave cavity oven. Materials within the oven are subjected to a degree of heating dependent on their electromagnetic properties. For many applications, it is desirable to maintain control over the distribution of heat deposition. This can be achieved through focussing of the electromagnetic field within the cavity. Two new mechanisms are identified where an increased level of control over the heating pattern and its location could be advantageous. The research described within this thesis aims to improve heating selectivity in microwave cavity ovens by the identification and enhanced control of modal patterns in degenerate and non-degenerate resonators. This is achieved through the analysis of two novel oven arrangements. The first of these addresses the requirement for highly selective heating in hyperthermia treatment. It is demonstrated that proper selection of a forced degenerate mode set can lead to an enhancement in field focussing within the centre of the cavity through constructive and destructive interference of the fields in each mode pattern. It is found that a highly selective peak of field can be produced within the centre of a large cylindrical waveguide cavity for the purpose of hyperthermia treatment. The peak is produced using a quasi degenerate mode set excited at approximately 1:3GHz. The second example presents an open oven design for the curing of epoxy and encapsulant materials within the micro-electronics packaging industry. It is intended that the oven be placed on the arm of a precision alignment machine such that the curing and placement stages of production be combined, suggesting an increase in production efficiency. Two excitation schemes are presented based on the coupling of quasi degenerate mode sets through a wide frequency range and the excitation of a single high order mode enabling uniform field distribution for heating of encapsulant material and increased selective heating through spatial alignment of modal field peaks, respectively. Experimental results demonstrate the viability of the open-ended microwave oven for curing. Both proposed excitation methods within the open oven design are investigated with results presented. Optimisation of the heating fields is achieved through inclusion of lowloss materials within the oven. Curing of an encapsulant material covering a commercial chip package is achieved and the overall design validated.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.507386  DOI: Not available
Share: