Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.506723
Title: Uncertainty and topographic visualisations
Author: Sivaraksa, M.
Awarding Body: Aston University
Current Institution: Aston University
Date of Award: 2008
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
This thesis is a study of low-dimensional visualisation methods for data visualisation under certainty of the input data. It focuses on the two main feed-forward neural network algorithms which are NeuroScale and Generative Topographic Mapping (GTM) by trying to make both algorithms able to accommodate the uncertainty. The two models are shown not to work well under high levels of noise within the data and need to be modified. The modification of both models, NeuroScale and GTM, are verified by using synthetic data to show their ability to accommodate the noise. The thesis is interested in the controversy surrounding the non-uniqueness of predictive gene lists (PGL) of predicting prognosis outcome of breast cancer patients as available in DNA microarray experiments. Many of these studies have ignored the uncertainty issue resulting in random correlations of sparse model selection in high dimensional spaces. The visualisation techniques are used to confirm that the patients involved in such medical studies are intrinsically unclassifiable on the basis of provided PGL evidence. This additional category of ‘unclassifiable’ should be accommodated within medical decision support systems if serious errors and unnecessary adjuvant therapy are to be avoided.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.506723  DOI: Not available
Keywords: Engineering
Share: