Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.502151
Title: Solid state NMR studies of inorganic pigment materials and catalysts
Author: Kemp, Thomas F.
Awarding Body: University of Warwick
Current Institution: University of Warwick
Date of Award: 2008
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
The research conducted can be split into three major regions; pigment material, a simulation program called QuadFit and mesoporous oxides. There has also been some extra work conducted on a catalyst for partial hydrogenation of vegetable oils. Various techniques have been used on the different systems including XPS, STEM and 77Se, 17O, 93Nb, 15N, 119Sn, 27Al, 115In and 63,65Cu static and MAS NMR. The pigment materials consist of a series of materials which are grouped under the F-Colours project. The pigments consist of sulphur doped tin niobates, copper indium sulphur selenide doped zinc selenides, sulphur doped tin tungstates and colloidal gold and silver enamels. The sulphur doped tin niobate study shows a conversion from foordite to pyrochlore and also where the sulphur sits in the structure. The copper indium sulphur selenide doped zinc selenide study shows the indium and copper moving into the zinc selenide as copper indium pairs. However, how the pairs sit in the structure remains undetermined. The sulphur doped tin tungstate study shows that the sulphur acts as a promoter for the beta phase rather than the desired alpha phase. The enamels based on gold and silver show that the tin site does not determine the colour of the enamel and the silver-gold association is likely to be the dominant factor. Mesoporous oxides show a link between the amount of mesoporous structure and their temperature stability. The nitrogen spectra of the template in the material shows that in the mesoporous silicate (which has the largest surface area) there is a breakdown of the amine into NH groups which does not appear in the other mesoporous materials. This could lead to a method of increasing the surface area of the other mesoporous oxides. QuadFit has the ability to simulate quadrupolar and CSA interactions with distributions of interactions whilst static and the quadrupolar interaction with distributions under MAS. The program is written in Java so will run on most platforms and also has near perfect stability.
Supervisor: Not available Sponsor: Engineering and Physical Sciences Research Council (EPSRC) ; Mattley, Johnson
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.502151  DOI: Not available
Keywords: QC Physics ; TP Chemical technology
Share: