Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.498257
Title: Design and integrity of deterministic system architectures
Author: Smith, Richard Bartlett
Awarding Body: University of London
Current Institution: University College London (University of London)
Date of Award: 2007
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Abstract:
Architectures represented by system construction 'building block' components and interrelationships provide the structural form. This thesis addresses processes, procedures and methods that support system design synthesis and specifically the determination of the integrity of candidate architectural structures. Particular emphasis is given to the structural representation of system architectures, their consistency and functional quantification. It is a design imperative that a hierarchically decomposed structure maintains compatibility and consistency between the functional and realisation solutions. Complex systems are normally simplified by the use of hierarchical decomposition so that lower level components are precisely defined and simpler than higher-level components. To enable such systems to be reconstructed from their components, the hierarchical construction must provide vertical intra-relationship consistency, horizontal interrelationship consistency, and inter-component functional consistency. Firstly, a modified process design model is proposed that incorporates the generic structural representation of system architectures. Secondly, a system architecture design knowledge domain is proposed that enables viewpoint evaluations to be aggregated into a coherent set of domains that are both necessary and sufficient to determine the integrity of system architectures. Thirdly, four methods of structural analysis are proposed to assure the integrity of the architecture. The first enables the structural compatibility between the 'building blocks' that provide the emergent functional properties and implementation solution properties to be determined. The second enables the compatibility of the functional causality structure and the implementation causality structure to be determined. The third method provides a graphical representation of architectural structures. The fourth method uses the graphical form of structural representation to provide a technique that enables quantitative estimation of performance estimates of emergent properties for large scale or complex architectural structures. These methods have been combined into a procedure of formal design. This is a design process that, if rigorously executed, meets the requirements for reconstructability.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.498257  DOI: Not available
Share: