Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.496989
Title: Special purpose quantum information processing with atoms in optical lattices
Author: Klein, Alexander
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2007
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Abstract:
Atoms in optical lattices are promising candidates to implement quantum information processing. Their behaviour is well understood on a microscopic level, they exhibit excellent coherence properties, and they can be easily manipulated using external fields. In very deep optical lattices, each atom is restricted to a single lattice site and can be used as a qubit. If the lattice is shallow enough such that the atoms can move, their properties can be used to simulate certain condensed matter phenomena such as superconductivity. In this thesis, we show how technical problems of optical lattices such as restricted decoherence times, or fundamental shortcomings such as the lack of phonons or strong spin interactions, can be overcome by using current or near-future experimental techniques. We introduce a scheme that makes it possible to simulate model Hamiltonians known from high-temperature superconductivity. For this purpose, previous simulation schemes to realise the spin interaction terms are extended. We especially overcome the condition of a filling factor of exactly one, which otherwise would restrict the phase of the simulated system to a Mott-insulator. This scheme makes a large range of parameters accessible, which is difficult to cover with a condensed matter setup. We also investigate the properties of optical lattices submerged into a Bose-Einstein condensate (BEC). A weak-coupling expansion in the BEC-impurity interaction strength is used to derive a model that describes the lattice atoms in terms of polarons, i.e.~atoms dressed by Bogoliubov phonons. This is analogous to the description of electrons in solids, and we observe similar effects such as a crossover from coherent to incoherent transport for increasing temperatures. Moreover, the condensate mediates an attractive off-site interaction, which leads to macroscopic clusters at experimentally realistic parameters. Since the atoms in the lattice can also be used as a quantum register with the BEC mediating a two-qubit gate, we derive a quantum master equation to examine the coherence properties of the atomic qubits. We show that the system exhibits sub- and superdecoherence and that a fast implementation of the two-qubit gate competes with dephasing. Finally, we show how to realise the encoding of qubits in a decoherence-free subspace (DFS) using optical lattices. We develop methods for implementing robust gate operations on qubits encoded in a DFS exploiting collisional interactions between the atoms. We also give a detailed analysis of the performance and stability of the gate operations and show that a robust implementation of quantum repeaters can be achieved using our setup. We compare the robust repeater scheme to one that makes use of conventional qubits only, and show the conditions under which one outperforms the other.
Supervisor: Jaksch, Dieter Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.496989  DOI: Not available
Keywords: Atomic and laser physics ; Theoretical physics ; Ultracold atoms ; Bose-Einstein condensation ; Optical lattices ; Quantum information theory ; Quantum simulations ; Polarons
Share: