Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.493280
Title: The influence of particle type and process conditions on electrodeposited composite coatings
Author: Morana, Roberto
ISNI:       0000 0001 3419 4630
Awarding Body: Loughborough University
Current Institution: Loughborough University
Date of Award: 2006
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Composite materials are usually multi-phase materials, made up from two or more phases, which are combined to provide properties that the individual constituents cannot. This technology represents an economical way to improve product performances avoiding the use of expensive materials. Composite materials can be obtained as films by means of the electrolysis of electroplating solutions in which micrometre- or submicrometre-size particles are suspended: variable amounts of these particles become incorporated in the electrochemically produced solid phase, to which they impart enhanced properties. The main aims of the present work contributing to this thesis are the study of different parameters influencing the electroco-deposition process in order to promote and improve the applicability of such a technology in the high speed electroplating industry. Following a comprehensive review on the electroco-deposition of composite coatings, the phenomena have been analysed moving from a microscopic point of view i. e. the role of the metal ions present in the electrolyte and adsorption on the inert particles and their interactions with the growing metal layer, to a macroscopic point of view i. e. the electrolyte agitation, its influence on particle motion and all the issues related to the presence of particles in an electrolyte during electroplating. In particular the inert particle influence in terms of geometry, dimension and chemical nature (spherical polystyrene particles vs. irregular alumina particles with different dimensions), the metal matrix influence (nickel, copper and zinc), the influence of electrolyte agitation (using a Rotating Cylinder Electrode cell system) and the influence of the coating thickness on particle content in the final coating, using different deposition times, have been examined. The importance of the particle shape has been highlighted showing how incorporating irregular geometries gave higher particle incorporation densities than regular geometries. The influence of the substrate finishing in terms of imperfections has been related to the particle incorporation rate showing how small surface imperfections enhanced the incorporation of particles. Different hydrodynamic regimes have been analysed resulting three different regimes being discerned: laminar, transitional and turbulent. The consequence, in terms of particle incorporation levels, has been found showing how the amount of particles in the coating changed from one regime to another. Different rate-determining steps were related to the hydrodynamics: when the regime is laminar, particles were incorporated as agglomerates and the process was under particle transfer control, whilst in the turbulent zone, the rate determining step was the velocity of reduction of the ions adsorbed on the particle surface.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.493280  DOI: Not available
Keywords: Electrolytic-deposition ; Composite coatings ; Electroco deposition ; Rotating cylinder electrode ; Electrolyte agitation ; Image analysis ; Alumina ; Polystyrene ; Centrifugal forces
Share: