Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.491622
Title: Aspects of Yang-Mills theory in twistor space
Author: Jiang, Wen
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2008
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
This thesis carries out a detailed investigation of the action for pure Yang-Mills theory which L. Mason formulated in twistor space. The rich structure of twistor space results in greater gauge freedom compared to the theory in ordinary space-time. One particular gauge choice, the CSW gauge, allows simplifications to be made at both the classical and quantum level. The equations of motion have an interesting form in the CSW gauge, which suggests a possible solution procedure. This is explored in three special cases. Explicit solutions are found in each case and connections with earlier work are examined. The equations are then reformulated in Minkowski space, in order to deal with an initial-value, rather than boundary-value, problem. An interesting form of the Yang-Mills equation is obtained, for which we propose an iteration procedure. The quantum theory is also simplified by adopting the CSW gauge. The Feynman rules are derived and are shown to reproduce the MHV diagram formalism straightforwardly, once LSZ reduction is taken into account. The three-point amplitude missing in the MHV formalism can be recovered in our theory. Finally, relations to Mansfield’s canonical transformation approach are elucidated.
Supervisor: Candelas, Philip Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.491622  DOI: Not available
Keywords: Theoretical physics ; Quantum theory (mathematics) ; Geometry ; twistors ; Yang-Mills ; scattering
Share: