Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.491114
Title: Microcavities for atom chips
Author: Trupke, Michael
ISNI:       0000 0001 3536 8567
Awarding Body: Imperial College London (University of London)
Current Institution: Imperial College London
Date of Award: 2007
Availability of Full Text:
Full text unavailable from EThOS.
Please contact the current institution’s library for further details.
Abstract:
This thesis describes the development and implementation of fibre-coupled, micron-scale optical resonators for the detection and manipulation of neutral atoms. The resonators are intended for integration with atom chips. The latter are microfabricated devices which enable the cooling, trapping, gUiding and manipulation of atoms by means of optical, magnetic and electric fields. The fields are generated in part using micro-fabricated features on the surface of the chips. Optical cavities are among the most important tools in the study of the interactions between light and matter. They allow the observation of fundamental processes in quantum optics, based on the enhanced coupling of atomic transitions to light fields. Our resonators have mode volumes which are two orders of magnitude smaller than those used in typical cavity quantum electrodynamics experiments. Together with their high quality factors, this leads to large enhancement factors, rendering them ideal for the detection and manipulation of atoms on chips. They are scalable and directly fibre-coupled, both of which are qualities of interest for their implementation in quantum information-processing applications. In the thesis, the optical characteristics of the resonators are explained, as well as the basic principles of the interaction of atoms with their light field. The setup used for the test implementation of the devices is presented, together with early experimental results. These include the detection of atoms via their effect on the cavity reflection spectrum, and the detection of enhanced atomic fluorescence into the cavity mode. The thesis concludes with an outlook on further experimentation, possible improvements of the devices themselves, and a view on their integration with existing atom chip technology.
Supervisor: Not available Sponsor: Not available
Qualification Name: Imperial College London, 2007 Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.491114  DOI: Not available
Share: