Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.490789
Title: Ultrastable high finesse cavities for laser frequency stabilization
Author: Pugla, Sarika
ISNI:       0000 0001 3502 7367
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2008
Availability of Full Text:
Full text unavailable from EThOS.
Please contact the current institution’s library for further details.
Abstract:
Lasers with stability of the order of 10.15 or more form the basis of frequency metrology and several other experiments including gravitational wave detection, high-precision spectroscopy and tests of relativity. This thesis describes the frequency stabilization of 1064nm, Nd:YAG lasers to ultra-stable, high finesse Fabry-Perot cavities using the PoundDrever- Halliocking scheme. These lasers will be used as flywheel oscillators for optical atomic clocks. The first part of this thesis describes the design and development of a stable laser using a cryogenic, all-sapphire, high finesse Fabry-Perot cavity. Two similar systems have been developed and the beat frequency between the two systems has been measured. This beat frequency measurement provides a measure of relative stability of the laser. In addition experiments have also been performed with ULE (ultra-low expansivity) glass cavities. The thermal expansivity of ULE has a zero near room temperature and a turning point was found. A beat frequency measurement was made for a pair of lasers locked to ULE cavities.The frequency stabilization techniques applied to the lasers described in this thesis will be used for future frequency standards based on optical transitions.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.490789  DOI: Not available
Share: