Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.490070
Title: Studies of a 'blue' copper oxidase electrocatalyst
Author: Heath, Rachel Sarah
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2008
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Restricted access.
Access from Institution:
Abstract:
This thesis concerns the electrochemical investigation of high-potential laccases. These multicopper oxidases are efficient electrocatalysts for the dioxygen reduction reaction. A method for stabilising laccase on a graphite electrode was established. The method involved modification of the graphite surface by diazonium coupling of a 2-anthracene molecule. A laccase ‘film’ adsorbed on this modified surface remained stable for over two months and, typically, the current density for dioxygen reduction was doubled compared to a laccase ‘film’ on an unmodified surface. Protein film voltammetry was used to investigate thermodynamic and kinetic aspects of the electrochemical behaviour of laccase. The effect of inhibitors on the magnitude of reduction current and the position of the wave (related to the overpotential for the reaction) was also studied. Fluoride, chloride and azide showed different modes of inhibition and inhibition constants ranged from micromolar for azide to millimolar for chloride. In cyclic voltammetry experiments it was only in the presence of high concentrations of the inhibitors fluoride, chloride and azide that a non-turnover signal, corresponding to a one electron transfer process, was revealed. The evidence suggested that the non-turnover signal arose from interfacial electron transfer between the electrode and the type 1 or ‘blue’ copper. Evaluation of the peak areas allowed determination of the catalytic rate constant, kcat, as 300 s–1, and the electroactive surface coverage as four pmol cm–2. The rate of interfacial electron transfer was rapid enough to not limit catalysis at high overpotentials. A spectroelectrochemical cell was designed to investigate the behaviour of the type 1 copper in the presence of inhibitors and at different pH values. The inhibitors fluoride, chloride and azide had little effect on the reduction potential of the type 1 copper, but at higher pH values the reduction potential of the type 1 copper was decreased.
Supervisor: Armstrong, F. A. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.490070  DOI: Not available
Keywords: Catalysis ; Electrochemistry and electrolysis ; Enzymes ; Laccase ; enzyme ; oxygen reduction reaction ; copper ; electrocatalysis ; surface modification ; spectroelectrochemistry
Share: