Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.488675
Title: Surfaces functionality of precision machined components : modelling, simulation, optimization and control
Author: Aris, Najmil Faiz Mohamed
ISNI:       0000 0001 3427 3056
Awarding Body: Brunel University
Current Institution: Brunel University
Date of Award: 2008
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
This research develops an analytical scientific approach for investigating the high precision surface generation and the quantitative analysis of the effects of direct factors in precision machining. The research focuses on 3D surface characterization with particular reference to the turning process and associated surface generation. The most important issue for this research is surface functionality which is becoming important in the current engineering industry. The surface functionality should match with the characterization parameters of the machined surface, which can be expressed in formula form as proposed in chapter 4. Modelling and simulation are extensively used in the research. The modelling approach integrates the cutting forces model, thermal mode% vibration model, tool wear model, machining system response model and surface topography model. All of those models are integrated as a whole model. The physical model with such as direct inputs is formed. The major inputs to the model are tooling geometry and the process variables. The outputs from the modelling approach are cutting force, surface texture parameters, dimensional errors, residual stress and material removal rate. MATLAB and Simulink are used as tools to implement the modelling and simulation. According to the simulation results, it is found that the feed rate has the most profound effect on in surface generation. The influence of the vibrations between the cutting tool and the workpiece on the surface roughness may be minimised by the small feed rate and large tool nose radius. Surface functionality simulation has been developed to model and simulate the surface generation in precision turning. The surface functionality simulation model covers the material and tool wear as well. It shows that chip formation is resulted from cutting forces. Cutting trials are conducted to validate the modelling and simulation developed. There are positive results that show the agreement between the simulation and experimental results. The analysis of the results of turning trials and simulations are conducted in order to find out the effects of process variables and tooling characteristics on surface texture and topography and machining instability. From the research, it can be concluded that the investigation on modelling and simulation of precision surfaces generation in precision turning is performed well against the research objectives as proposed. Recommendations for future work are to improve the model parameters identification, including comprehensive tool wear, chip formation and using Neural Networks modelling in the engineering surface construction system.
Supervisor: Cheng, K. Sponsor: Universiti Teknologi Tun Hussien Orin (UTHM)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.488675  DOI: Not available
Keywords: 3D surface characterization ; Feed rate ; Surface generation ; Chip formation ; Tool wear
Share: