Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.486660
Title: Geometric dynamics of Vlasov kinetic theory and its moments
Author: Tronci, Cesare
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2008
Availability of Full Text:
Full text unavailable from EThOS. Please contact the current institution’s library for further details.
Abstract:
The Vlasov equation of kinetic theory is introduced and the Hamiltonian structure of its moments is presented. Then we focus on the geodesic evolution of the Vlasov moments [1.2]. As a first step, these moment equations generalize the Camassa-Holm equation [3] to its multi-component version [4]. Subsequently, adding electrostatic forces to the geodesic moment equations relates them to the Benney equations [5] and to the equations for beam dynamics in particle accelerators. Next, we develop a kinetic theory for self assembly in nano-particles. The Darcy law [6] is introduced as a general principle for aggregation dynamics in friction dominated systems (at different scales). Then, a kinetic equation is introduced [7,8] for the dissipative motion of isotropic nano-particles. The zeroth-moment dynamics of this equation recovers the classical Darcy law at the macroscopic level [7]. A kinetic-theory description for oriented nano-particles is also presented [9]. At the macroscopic level, the zeroth moments of this kinetic equation recover the magnetization dynamics of the Landau-Lifshitz-Gilbert equation [10]. The moment equations exhibit the spontaneous emergence of singular solutions (clumpons) that finally merge in one singularity. This behaviour represents aggregation and alignment of oriented nano-particles. Finally, the Smoluchowsky description is derived from the dissipative Vlasov equation for anisotropic interactions. Various levels of approximate Smoluchowsky descriptions are proposed as special cases of the general treatment. As a result, the macroscopic momentum emerges as an additional dynamical variable that in general cannot be neglected.
Supervisor: Not available Sponsor: Not available
Qualification Name: Imperial College London, Department of Mathematics, 2008 Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.486660  DOI: Not available
Share: