Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.485830
Title: Mass Spectrometric Analysis of Steroid Hormones for Application in Analysis of Bovine Urine
Author: Kirk, Jayne Marie
Awarding Body: University of York
Current Institution: University of York
Date of Award: 2007
Availability of Full Text:
Access from EThOS:
Abstract:
Analytical strategies for the identification and quantification of up to 14 androgenic steroids and up to 17 corticosteroids have been evaluated and applied to bovine urine. The two classes ofsteroid have been analysed both as the native species and as Girard P hydrazone derivatives. Triple quadrupole mass spectrometry, operated in multiple reaction monitoring mode, has permitted the development of methods that enable the simultaneous detection of a range ofandrogenic steroids and corticosteroids at the ng mL-1 level. For a non-targeted approach, screening for the presence of corticosteroids was performed on a time of flight mass spectrometer, where confirmation of the identities of corticosteroids was obtained from accurate mass information. Girard P hydrazone derivatives of androgenic steroids and corticosteroids are amenable to analysis by electrospray mass spectrometry. The presence of an ionic group at position C-3 ofthe steroids increases their response relative to the native species by up to 33 times for the androgenic steroids and up to 21 times for the corticosteroids. The derivatisation reaction has been shown to work effectively in bovine urine, with limits ofdetection determined as ::::; 1 ng mL-1 for both classes ofsteroid hydrazone. Ion trap mass spectrometry has proved to be an extremely powerful tool for the elucidation of dissociation pathways of steroids and their hydrazone derivatives. Analysis of androgenic steroids, androgenic steroid hydrazones and corticosteroid hydrazones using multistage tandem mass spectrometry has shown how the varying functionality of the steroids affects their dissociation pathways, and how comparisons between similar structures can aid the assignment of product ions. Multistage tandem mass spectrometry of the hydrazone derivatives provides a wealth of structure-specific product ions arising due to losses from either the steroid or hydrazine moiety, and detailed dissociation sequences have been established, enabling structure assignment. A complete method employing sample extraction and derivatisation followed by analysis using liquid chromatography-multistage tandem mass spectrometry has been developed to allow full characterisation and structure confirmation of the steroids present in urine.
Supervisor: Not available Sponsor: Not available
Qualification Name: University of York, 2007 Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.485830  DOI: Not available
Share: