Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.481200
Title: Electrophysiological studies of the visual pathways in Alzheimer's and Parkinson's disease
Author: Daniels, Rebecca
Awarding Body: University of Aston in Birmingham
Current Institution: Aston University
Date of Award: 1994
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Dopamine (DA) and acetylcholine (ACH) are neurotransmitters that are present in the visual pathway. DA is present in the retina and is associated with the interplexiform cells and horizontal cells. ACH is also present in the retina and is associated with displaced amacrine cells; it is also present in the superior colliculus. DA is found to be significantly depleted in the brain of Parkinson's disease (PD) patients and ACH in Alzheimer's disease (AD) patients. For this reason these diseases were used to assess the function of DA and ACH in the electrophysiology of the visual pathway. Experiments were conducted on young normals to design stimuli that would preferentially activate the magnocellular or parvocellular pathway. These stimuli were then used to evoke visual evoked potentials (VEP) in patients with PD and AD, in order to assess the function of DA and ACH in the visual pathway. Electroretinograms (ERGs) were also measured in PD patients to assess the role of DA in the retina. In addition, peripheral ACH function was assessed by measuring VEPs, ERGs and contrast sensitivity (CS) in young normals following the topical instillation of hyoscine hydrobromide (an anticholinergic drug). The results indicate that the magnocellular pathway can be divided into two: a cholinergic tectal-association area pathway carrying luminance information, and a non-cholinergic geniculo-cortical pathway carrying spatial information. It was also found that depletion of DA had very little effect on the VEPs or ERGs, confirming a general regulatory function for this neurotransmitter.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.481200  DOI: Not available
Keywords: Optometry
Share: