Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.466200
Title: The control of mitosis in mammalian tissues
Author: Morgan, James I.
Awarding Body: University of Aston in Birmingham
Current Institution: Aston University
Date of Award: 1976
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
The question of which factors are central in determining whether a cell will undertake a new round of mitosis or will decycle has been examined in the isolated thymic lymphocyte model. Such cell populations possess both in vivo and in vitro a subpopulation of quiescent lymphoblasts which may be induced to reinitiate their mitotic programme. In the intact animal the major determinant of proliferative activity is the plasma ionised calcium concentration. However it has been established in culture that a variety of hormones, ions, cyclic nucleotides, plant lectins and ionophores may like calcium elicit a mitogenic response. These agents do not appear however to initiate DNA synthesis in an identical fashion. Rather there are two distinct intracellular mitogenic axes. The first axis includes a number of adenylate cyclase stimulants, cyclic AMP, phosphodiesterase inhibitors and magnesium ions. It was found that all these mitogens required extracellular magnesium ions to exhibit their stimulatory capacity. This dichotomy in mitogenic activity was further emphasised by the observation that these mitogens are all inhibited by testosterone, whilst the magnesium-independent mitogens were insensitive to this androgen. Indeed this second group of stimulatory factors required the presence of calcium ions in the extracellular milieu for activity, and were, in contrast to the magnesium-dependent mitogens inhibited by the presence of oestradiol in the culture. By examining the interrelationships between these various mitogens and inhibitors it has been possible to propose a mechanism to describe the activation process in the thymocyte. Studies of the metabolism of cyclic nucleotides, membrane potential and transmembrane ion fluxes indicate that there may be a complex relationship between membrane fluidity, ion balance and cyclic nucleotide levels which may individually or in concert promote the initiation of DNA synthesis. A number of possible mechanisms are discussed to account for these observations.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.466200  DOI: Not available
Keywords: Pharmacy
Share: