Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.460881
Title: Synthesis of hydrazine by the fixation process
Author: Jermyn, T. J.
Awarding Body: University of Aston in Birmingham
Current Institution: Aston University
Date of Award: 1969
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
A critical review of the literature concerning organic derivatives of hydrazine, the ammonia-chlorine reaction and the electrolytic formation of hydrazine has been carried out. Apparatus was constructed to study the electrolysis of liquid ammonia, the formation of chloramine and the fixation of chloramine with a ketone to form an isohydrazone. In the latter case the reaction was carried out in a 3" diameter stirred tank and also in a 1" diameter, 2' high column reactor where the liquid phase was continuously recirculated. Two methods of analysis of azines and isohydrazones in a ketone solution have been developed. One is a colorimetric technique using p-dimethylaminobenzaldehyde and the other involves the hydrolysis of the organic derivative to hydrazine sulphate. Hydrazine was detected in low concentration in some of the electrolytic experiments carried out but it was concluded that this method did not show sufficient promise to warrant further investigation. The gas phase formation of chloramine and acetone isohydrazone has also been studied but in this system difficulties were encountered with the chlorine jet blocking with ammonium chloride. The formation of isohydrazones in a stirred tank reactor has been investigated in some detail and the effect of several parameters was determined. The yield was found to be extremely sensitive to chlorine concentration and in order to obtain yields of more than 90 per cent, the molar concentration of chlorine in the gas phase had to be of the order of 5 per cent. An optimum temperature in the region of 0°C was also detected. These results disagree with those quoted in previous studies but extensive experimental work has confirmed the information presented in this thesis. It has also been shown that at high yields the chloramine formation reaction took place in the gas phase.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.460881  DOI: Not available
Share: