Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.443950
Title: Integrated investigation of impact-induced noise and vibration in vehicular drivetrain systems
Author: Gnanakumarr, Max Mahadevan
ISNI:       0000 0001 3501 1859
Awarding Body: Loughborough University
Current Institution: Loughborough University
Date of Award: 2004
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
This thesis highlights one of the most significant concerns that has preoccupied drivetrain engineers in recent times, namely drivetrain clonk. Clonk is an unacceptable audible sound, which is accompanied by a tactile drivetrain response. This may occur under several different driving conditions. Many drivetrain NVH concerns are related to impact loading of subsystems down-line of engine. These concerns are induced by power torque surge through engagement and disengagement processes, which may propagate through various transmission paths as structural waves. The coincidence of these waves with the acoustic modes of sub-system components leads to audible responses, referred to as clonk. The approach usually undertaken and reported in literature is either purely theoretical or constitutes experimental observation of vehicle conditions. A few research workers have reported rig-based investigations, but not under fully dynamic conditions with controlled and reproducible impulsive action. The research reported in this thesis combines experimental and numerical investigation of high frequency behaviour of light truck drivetrain systems, when subjected to sudden impulsive action, due to driver behaviour. The problem is treated as a multi-physics interactive phenomenon under transient conditions. The devised numerical method combines multi-body dynamics, structural modal analysis, impact dynamics in lash zones and acoustic analysis within an overall investigation framework. A representative drivetrain system rig is designed and implemented, and controlled tests simulating driver behaviour undertaken. The combined numerical predictions and experimental noise and vibration monitoring has highlighted the fundamental aspects of drivetrain behaviour. Good agreement is' also found between the detailed numerical approach and the experimental findings. Novel methods of measurement such as Laser Doppler Vibrometery have been employed. Simultaneous measurements of vibration and noise radiation confirm significant elasto-acoustic coupling at high impact energy levels. One of the major finds of the thesis is the complex nature of the clonk signal, being a combination of accelerative and ringing noise, with the latter also comprising of many other lower energy content as observed in the case of transmission rattle and bearing-induced responses. Therefore, the link between rattle and clonk, long suspected, but not hitherto shown has been confirmed in the thesis. Another major find of particular commercial interest is the insignificant contribution of torsional damping devices such as dual mass flywheels upon the accelerative component of the clonk response.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.443950  DOI: Not available
Keywords: Powertrain NVH ; Multi-physics numerical analysis ; Multi-body dynamics ; Structural modal analysis ; Elasto-acoustic coupling ; Clonk phenomenon ; Transmission rattle
Share: