Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.441388
Title: The development and evaluation of head probes for optical imaging of the infant head
Author: Branco, Gilberto
Awarding Body: University of London
Current Institution: University College London (University of London)
Date of Award: 2007
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
The objective of this thesis was to develop and evaluate optical imaging probes for mapping oxygenation and haemodynamic changes in the newborn infant brain. Two imaging approaches are being developed at University College London (UCL): optical topography (surface mapping of the cortex) and optical tomography (volume imaging). Both have the potential to provide information about the function of the normal brain and about a variety of neurophysiologies! abnormalities. Both techniques require an array of optical fibres/fibre bundles to be held in contact with the head, for periods of time from tens of seconds to an hour or more. The design of suitable probes must ensure the comfort and safety of the subject, and provide measurements minimally sensitive to external sources of light and patient motion. A series of prototype adaptable helmets were developed for optical tomography of the premature infant brain using the UCL 32-channel time-resolved system. They were required to attach 32 optical fibre bundles over the infant scalp, and were designed to accommodate infants with a variety of head shapes and sizes, aged between 24-weeks gestational age and term. Continual improvements to the helmet design were introduced following the evaluation of each prototype on infants in the hospital. Data were acquired to generate images revealing the concentration and oxygenation of blood in the brain, and the response of the brain to sensory stimulation. This part of the project also involved designing and testing new methods of acquiring calibration data using reference phantoms. The second focus of the project was the development of probes for use with the UCL frequency-multiplexed near-infrared topography system. This is being used to image functional activation in the infant cortex. A series of probes were developed and experiments were conducted to evaluate their sensitivity to patient motion and to compression of the probe. The probes have been used for a variety of functional activation studies.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.441388  DOI: Not available
Share: