Use this URL to cite or link to this record in EThOS:
Title: Unsteady aerodynamics using high-order methods
Author: Bissessur, Prithiraj
ISNI:       0000 0001 3465 705X
Awarding Body: University of Southampton
Current Institution: University of Southampton
Date of Award: 2007
Availability of Full Text:
Access through EThOS:
Access through Institution:
Unsteady flows occur in many applications of engineering interest. One category of unsteady flows occur as self-sustaining oscillatory fluid motion, such as the flow over rectangular cavities. There has been a significant amount of research performed on this topic over the years, both experimentally and numerically. The unsteady flow over rectangular cavities is the case study in this research. In this work, a generic numerical solver is developed and written to predict the near-field aerodynamics of unsteady fluid motions at low Mach numbers. High order numerical schemes are employed to this effect. The Detached Eddy Simulation (DES) method is considered for the turbulence modelling part. At the start of this project, the combination of high order Computational Aeroacoustics (CAA) numerical schemes, non-reflecting boundary conditions and DES constituted a state of the art approach to the simulation of unsteady compressible flow phenomena at low Mach numbers. In the numerical study of 2D cavities, a number of cases with different length-to depth (L/D) ratios were considered. Under the same flow conditions, the relation of the L/D to the radiated sound in the farfield is sought. It is found that the nature of the flow interaction with the downstream corner, which changes with L/D, dictates the directivity and amplitude of the sound field observed at a far distance from the source. To gain more insight into the topology of 3D cavity flows, an experimental study using non-intrusive measurement techniques is outlined. This explains the work performed on 3D cavities with different spanwise dimensions. A detailed flow visualisation of the meanflow patterns in various measurements planes describes the presence of strong 3D features. In particular, the symmetrical flow behaviours at relatively large width-to-depth (W/D) ratios of 3 and 2 are highlighted. This provides the justification to employ a symmetry condition in the 3D DES study. Therefore, the final case study is based on the numerical simulation of a 3D cavity geometry where only half of the cavity is simulated. The observations from the 2D simulations and the experimental work provided a basis of the expectations of this test case. Again, a correlation between the near-field aerodynamics and the farfield sound is sought. The 3D cavity showed (as in the 2D cases) a preferred directivity in the farfield.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: TA Engineering (General). Civil engineering (General) ; QC Physics