Use this URL to cite or link to this record in EThOS:
Title: Advanced transmission electron microscopy studies of III-V semiconductor nanostructures
Author: Tey, Chun Maw
Awarding Body: University of Sheffield
Current Institution: University of Sheffield
Date of Award: 2006
Availability of Full Text:
Access from EThOS:
Access from Institution:
III -V semiconducting materials allow many novel optoelectronic devices, such as light emitting diodes and lasers, to be developed. Furthermore, recent development in crystal growth techniques allows the growth of low-dimensional semiconductor heterostructures. To achieve the best performance, the crystallinity and the growth mechanism of the devices have to be analysed. In this work, a JEOL JEM-2010F field emission gun transmission electron microscope (TEM) is employed to analyse the nanoscale semiconductor structures. Various techniques, such as conventional TEM, scanning TEM, high resolution TEM and energy-filtered TEM were employed to characterize the structural properties of III-V semiconducting materials. In this thesis, advanced TEM analysis on InAs/GaAs quantum dots with InAIAs capping layer, GaInNAs/GaAs quantum wells and annealed low temperature-grown GaAs are presented. The former investigates the impact of varying the thicknesses of InAIAs in the combined two-level InAIAs-InGaAs capping layer on InAs/GaAs quantum dots. Based on the energy-filtered TEM images, the concentration of Al near the apex of the dots is significantly reduced. An increase in the height of the quantum dots has been observed when the thickness of InAIAs capping layer is increased. This is attributed to the suppression of indium atom detachment rate from the InAs dots during the capping process. Effects of growth temperature on the structural properties of 1.6 um GaInNAs/GaAs mUltiple quantum wells were also investigated. TEM studies show that compositional modulations and dislocations occurred in the sample grown at 400°C and possible point defect formation in the sample grown at 350 °C. The photoluminescence intensities for samples grown at 350 and 400°C are degraded dramatically, compared with the sample grown at 375 °C. The effects of low temperature-growth GaAs annealed at different temperatures were systematically investigated by TEM. Along with other collaborative measurements, the arsenic precipitate parameters obtained from TEM images were employed to develop a semi-quantitative model based on Ostwald ripening to explain the precipitate formation. Furthermore, the "two-trap" model successfully explains the anomalous features in the carrier lifetime and resistivity trends in annealed low temperature-grown GaAs.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available