Use this URL to cite or link to this record in EThOS:
Title: Stabilization and control in a linear ion trap
Author: Stacey, John-Patrick
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2003
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
This thesis describes experimental work towards developing a trapped ion quantum information processor. An existing ion trap apparatus was capable of trapping and laser-cooling single ions or small ion strings of 40 Ca+, and had been used for studies of quantum jumps and natural lifetime measurements in Ca. This thesis describes improvements in this apparatus, which have allowed the stability and the flexibility of experimental control of the ions to be greatly increased. This enabled experiments to read out the spin state of a single trapped ion, and to load ions with isotope selectivity through photoionization. The optical systems were improved by installation of new lasers, optical reference cavities, and a system of acousto-optic modulators for laser intensity switching and frequency control. The photon counting for fluorescence detection was improved, and a new photon time-of-arrival correlation circuit developed. This has permitted rapid and more sensitive detection of micromotion, and hence cancellation of stray fields in the trap. A study of resonant circuits in the low RF, high voltage (10 MHz, 1 kV) regime was carried out with a view to developing a new RF supply for the Paul trap with reduced noise and increased power. A new supply based on a helical resonator was built and used to trap ions. This technique has reduced noise and will permit higher secular frequencies to be attained in the future. A magnetic field B in the ion trap is used to define a quantization axis, and in one series of experiments was required to be of order 100 G to provide a substantial Zeeman splitting. A set of magnetic field coils to control the size and direction of B is described. The design of these posed some problems owing to an unforseen issue with the vacuum chamber. In short, it is magnetizable and acts to first approximation like a magnetic shield. The field coils had to be sufficiently substantial to produce the desired field at the ion even in the presence of this shielding effect, and dark resonance (and other) spectra with Zeeman splitting were obtained to calibrate the field using the ion as a probe. Finally, the thesis describes the successful loading of the ion trap by laser photoionization from a weak atomic beam. This involved two new lasers at 423 nm and 389 nm. Saturated absorption spectroscopy of neutral calcium is first described, then transverse excitation of an atomic beam in our vacuum chamber is used to identify all the main isotopes of calcium and confirm their abundances in our source (a heated sample of natural calcium). Finally, photoionization is used to load the trap. This has three advantages over electron-impact ionization. By avoiding an electron gun, we avoid charging of insulating patches and subsequent electric field drift as they discharge; the flux in the atomic beam and hence calcium (and other) deposits on the electrodes can be greatly reduced; and most importantly, the photoionization is isotope selective. Evidence is presented which suggests that even with an non-enriched source, the rare isotope 43 Ca can be loaded with reasonable efficiency. This isotope is advantageous for quantum information experiments for several reasons, but chiefly because its ground state hyperfine structure can act as a stable qubit.
Supervisor: Steane, Andrew Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Laser Spectroscopy ; Theoretical physics ; Atomic and laser physics ; quantum ; quantum computation ; qubit ; atom ; ion ; ion trap ; laser ; calcium ; spectroscopy ; cooling ; transition ; modulation ; radiofrequency ; rf ; magnetic ; Zeeman