Use this URL to cite or link to this record in EThOS:
Title: Structural & electronic properties of some early transition metal oxides
Author: Jewell, Catherine Mary
Awarding Body: University of London
Current Institution: University College London (University of London)
Date of Award: 2004
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Low-dimensional spin systems with S = 1/2 and a singlet ground state attract intensive research efforts because of the quantum nature of their ground state. Since the discovery of the singlet plaquette CaV4O9 compound more attention has been paid to chemical analogues with S = 1/2, V4+ (d1) ions. For example, the V2O5 network exhibits the characteristics of layered and crystallographic shear structures and there is a large vanadium oxide bronze family, MxV2O5 (M = alkali, alkaline earth metals), which shows several original [V2O5] networks. For this reason, the atomic architectures of V2O5 and its derivatives provide a stage where various lower-dimensional quantum critical phenomena can be realised. Compounds in the series LixV2O5 were synthesised via soft chemistry methods and characterised structurally and magnetically via high-resolution x-ray and neutron diffraction and magnetization measurements using a SQUID magnetometer. Additional weaker peaks observed in certain of the diffraction patterns suggested the occurrence of charge ordering of vanadium ions in an incommensurately modulated superstructure for some of the E-LixV2O5 and E'-LixV2O5 phases. Having discovered a possible magnetic transition (Tf ~ 25 K) in one of these dilute-spin phases, Li0.50V2O5, believed to be associated with the low-dimensional, chain-like arrangement of the V4+ (S = 1/2, d1) cations over the non-magnetic V5+(S = 0, d0) network, a local probe, SR, was applied to investigate its ground state and the ground states of other members of the series LixV2O5 with x = 0.55, 0.64 and 0.72 which also exhibit interesting magnetic behaviour. Lack of oscillation in the SR data revealed the absence of any long-range magnetic order for Li0.50V2O5, Li0.55V2O5, Li0.64V2O5, and Li0.72V2O5, supportive of a true one-dimensional ground state, suggesting the formation of domains of one-dimensional antiferromagnetic chains, consistent with the Bonner-Fisher model for low-dimensional magnetic behaviour which provided a good fit to the SQUID data collected.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available