Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.403070
Title: Nuclear magnetic relaxation in the slow tumbling regime
Author: Harris, Graham
Awarding Body: University of Leicester
Current Institution: University of Leicester
Date of Award: 2003
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
This thesis is primarily concerned with relaxation and the study of the molecular dynamics behind it. Molecular motions occur on a variety of timescales, for instance, site specific internal motions occur within nano-to-picoseconds, and the relative movement of secondary structure elements occur within milli-to-microseconds. Relaxation also occurs between two spins close in space, and gives rise to NOEs. The size of the NOE is determined by the cross-relaxation rate, which is inversely proportional to the distance between the two spins. The determination of accurate cross relaxation rate constants can be difficult; due to both spin diffusion and imperfect selective excitation. One particular spin diffusion suppression method is studied in detail by a series of simulations. This is then applied to Amphotericin-B, a medium sized molecule, and several NOEs are measured free of spin diffusion contributions. Motions on the milli-to-microsecond timescale can have a dramatic affect on the R2 relaxation rate constant. Previously, R2 has been measured as a function of field strength using either CPMG or spin lock experiments. Each experiment is only suited to measuring a limited range of timescales based on the field strengths available for use. Recent experiments have combined CPMG and off-resonance spin-lock experiments to measure R2 over a wide range of field strengths, from 2-40 krad/s. These experiments are applied to the unstructured domain of RhoGDI. RhoGDI is interesting as it consists of two domains: one domain is rigid, whilst the other is unstructured in solution, but contains transient elements of secondary structure. Motions on the pico-to-nanosecond timescale can be mapped by measuring the R1, R2 and heteronuclear steady state NOE. A reduced spectral density function analysis was performed on the structured domain of RhoGDI. A comparison is also shown between the RSDF of the protonated and deuterated forms of RhoGDI.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.403070  DOI: Not available
Share: