Use this URL to cite or link to this record in EThOS:
Title: Role of Base and nucleotide excision repair pathways in processing of clustered DNA lesions induced by ionising radiation
Author: Budworth, Helen Louise
ISNI:       0000 0001 3508 1996
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2003
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Ionising radiation (IR) induces a wide spectrum of lesions in DNA, including double- and single-strand breaks, abasic (AP) sites and a variety of base lesions. IR-induced damage to DNA can range from simple, isolated lesions to clustered DNA damage in which multiple lesions are formed, usually within a single helical turn of the DNA. Individual lesions within a cluster are recognised by repair enzymes of the base excision repair (BER) pathway, however, clustered DNA damage may be recognised as a bulky lesion and be processed by nucleotide excision repair (NER). Additionally, the presence of other closely spaced lesions may affect the rate and fidelity of DNA repair and, in doing so, may contribute to the harmful effects of ionising radiation. The aim of this study is to gain further understanding of the repairability of clustered DNA damage and the effects of multiple lesions on cellular repair systems. 7, 8-dihydro-8-oxoguanine (8-oxoG), thymine glycol (Tg), AP sites and single-strand breaks (SSB), some of the most frequently formed IR-induced DNA lesions, were employed in synthetic oligonucleotides to model various types of clustered lesions and their repairability was studied using purified base excision repair enzymes and cell extracts. It was revealed that BER is the major repair system involved in the processing of clustered DNA lesions, and that some clustered lesions are repaired with decreased efficiency. Both the composition of lesions in a cluster and the positioning of the various lesions determine their repairability by base excision repair enzymes.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Enzymes ; Research ; DNA damage ; DNA repair