Use this URL to cite or link to this record in EThOS:
Title: The electrophysiological and mechanical effects of gap junction uncoupling in cardiac muscle
Author: Kettlewell, Sarah
Awarding Body: University of Glasgow
Current Institution: University of Glasgow
Date of Award: 2002
Availability of Full Text:
Access through EThOS:
Access through Institution:
The aim of this study was to study the electrophysiological and mechanical effects of the gap junction uncoupler 1-heptanol in the left ventricle (epicardial surface) of the artificially perfused Langendorff rabbit heart. Specifically, electrical restitution and the dispersion of repolarisation were studied. Methods. Using a single monophasic action potential (MAP) electrode, in the healthy and failing (coronary ligated) heart, the effect of 1-heptanol was studied on rate dependent changes in action potential duration. Dispersion of repolarisation was measured sequentially. A 32 MAP electrode array was developed to simultaneously record dispersion of repolarisation from the epicardial surface of the left ventricle of healthy hearts. Restitution was studied using an extrastimulus protocol that involved electrically stimulating the heart with 16 S1 stimuli (350ms intervals), and an extrastimulus S2. S1-S2 interval was increased progressively from 70 to 600ms. S1-S2 changes of 5ms were made between 70 and 150ms, 10ms between 150 and 350ms, and 50ms between 350 and 600ms. Protocols were run at 37°C, initially in Tyrode's solution, then after addition of 0.3mM 1-heptanol. Results. The single catheter study showed that failure significantly (P<0.05) prolongs MAP duration between cycle lengths of 250ms and 650ms. No base to apex changes, changes in dispersion of repolarisation or ventricular fibrillation thresholds were observed. 1-Heptanol, at cycle lengths above 350ms, significantly (P<0.05) decreased MAP duration in failing and healthy hearts. 1-Heptanol however did not alter the dispersion of repolarisation or ventricular fibrillation threshold in healthy and failing hearts. The last SI MAP in the 16 beat train and the S2 MAP obtained using the 32 electrode array were analysed at 90% repolarisation (MAPD90). S2 MAPD90 increased with S I-S2 interval up to -180ms but decreased at longer intervals. 0.3mM l-heptanol exacerbated this negative slope in the restitution curve from (mean±SEM) -0.031±O.004 in Tyrode's compared to -O.063±O.005 in O.3mM 1-heptanol (PO.05) in the presence of O.3mM l-heptanol. Conduction delay was increased from (mean±SEM) 44.2±0.82ms to 49.2±O.87ms (P0.05) and caused a significant conduction slowing from (mean±SEM) 45.50±2.I2ms in Tyrode to 55.11±2.82ms in carbenoxolone (P<0.05). Carbenoxolone has an inconsistent effect on single cell fractional shortening and Ca2+ handling. Conclusions. The biphasic relationship and the increased dispersion of repolarisation in the presence of 0.3mM I-heptanol may have implications for the development of alternans and/or arrhythmias (Gilmour and Chialvo, 2000). The cause of the negative slope is as yet unknown. but it is likely that it is an effect on the single cell rather than gap junction uncoupling.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: RM Therapeutics. Pharmacology