Use this URL to cite or link to this record in EThOS:
Title: The use of airborne scanning laser altimetry for improved river flood prediction
Author: Cobby, David Mark
ISNI:       0000 0001 3559 4812
Awarding Body: University of Reading
Current Institution: University of Reading
Date of Award: 2002
Availability of Full Text:
Access through EThOS:
Airborne scanning laser altimetry (LiDAR) is an important new data source for many environmental applications, mapping topographic and surface object height to high vertical (±15-20cm) and horizontal (±30-100cm) accuracy over large areas, both time and cost effectively. These data offer improvements in 2D hydraulic flood models by providing floodplain bathymetry and vegetation height for the parameterisation of friction. Current parameterisations use one (temporally constant) value of friction for the floodplain, and one for the channel, with these values determined through a calibration procedure which limits the physical basis of the model and, hence, its applicability to different catchments and flood events. Primarily for this reason, a LiDAR data processing system is developed that segments a rural scene into water and three vegetation height classes. The vegetation and topographic heights in each class are calculated, and are accurate to ±14cm and ±17cm (respectively) for the class 'crops and grasses'. The vegetation heights are subsequently converted. using existing empirical equations, into friction coefficients that vary with the local flow depth and velocity. This friction parameterisation is implemented in the TELEMAC-2D model and a Hood that occurred on the river Severn in 1998 is simulated. When compared with a Synthetic Aperture Radar (SAR) image of the event, the model accurately predicts the inundation extent. The LiDAR vegetation segmentation is also used to drive a new mesh generator which decomposes the mesh around automatically identified vegetation features so t.hat. regions of abruptly changing boundary friction (and, as it. transpires, topographic gradient) are represented more explicitly in t.he model. Further model simulations demonstrate (i) an improvement in inundation extent prediction using the spatiotemporally variable friction parameterisation on the decomposed mesh, and (ii) variations in predicted velocities which may be observable using remote sensing. Indeed. velocity patterns are identified as important in model validation as the SAR data exhibit inadequacies.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available