Use this URL to cite or link to this record in EThOS:
Title: Fixed and variable time-stepping numerical methods for dynamical systems.
Author: Christodoulou, Nikolaos Styllianou.
Awarding Body: University of Sussex
Current Institution: University of Sussex
Date of Award: 2002
Availability of Full Text:
Access through EThOS:
This thesis is concerned with the numerical solution of dynamical systems by fixed and variable time-stepping methods. Chapter I, reports on current work in the field and states principal results. Chapter 2, briefly reviews dynamical systems theory for ordinary differential equations. In Chapter 3, standard numerical methods for continuation of solution branches are summarised. Chapter 4, continues the discussion on bifurcations and spurious solutions for numerical methods. The mechanism by which the presence of spurious numerical solutions degrades the numerical approximation of an attractor of the underlying system is studied. Further, an investigation into how well real bifurcations in the family of dynamical systems are approximated as the step-size varies is carried out. In general, the preservation of bifurcation structures and stability under numerical simulations is discussed. In addition, the behaviour of numerical solutions generated by a Runge-Kutta method applied to a dynamical system whose analytical solution undergoes a Hopf bifurcation is investigated. Hopf bifurcation results for the numerical solution are presented and analysed. In Chapter 5, the stability step-size constraints are discussed further. In particular, it is proved that for any dynamical system with locally Lipschitz I, trajectories of solutions neither cross nor merge in phase space. A necessary condition to stop merging or crossing of trajectories in numerical simulations is derived using linear theory. Finally, in Chapter 6, a phase space error control "PS8 error control" is introduced which bounds the truncation error at each step by a fraction of the solution arc length over the corresponding time interval. It is shown that this error control can be incorporated within a standard algorithm as an additional constraint at negligible additional computational cost. Numerical results are given to demonstrate that the new error control has positive effects on the linear stability properties around true fixed points and moreover, prevents spurious fixed points that might otherwise be allowed by the adaptive algorithm. Also,prevents spurious fixed points that might otherwise be allowed by the adaptive algorithm. Also, since step-size selection is non-trivial for phase space error controls as they are not based on a simple error estimate, a new step-size selection scheme is introduced which leads to stable stepsizes (with fast linear convergence to a constant value) near fixed points. Numerical simulations that illustrate and confirm the analysis, as regards the dynamics of the numerical solution and the step-size sequences near to stable and saddle points, are also presented.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available