Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.392309
Title: Photoemission and magnetic response in the bipolaronic superconductor
Author: Dent, C. J.
Awarding Body: Loughborough University
Current Institution: Loughborough University
Date of Award: 2001
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
A theory of angle-resolved photoemission (ARPES) in doped charge-transfer :.1ott insulators is developed taking into account the realistic band structure, (bi)polaron formation due to the strong electron-phonon interaction, and a random field potential. We derive the coherent part of the ARPES spectra with the oxygen hole spectral function calculated in the non-crossing (ladder) approximation and with the exact spectral function of a one-dimensional hole in a random potential. On the basis of this theory,eplanations are proposed for several features of the ARPES spectra taken from the cuprate superconductors. These Include the polarisation dependence and spectral shape in YBa2Cu307 and YBa2CU.jOS. The theory is compatible with the doping dependence of kinetic and thermodynamic properties of the cuprates as well as with the d-wave symmetry of the superconducting order parameter. The scattering cross section of a Coulomb potential screened by a charged Bose gas (CBG) is calculated both above and below the Bose-Einstein condensation temperature, using the variable phase method. In contrast with the BCS superconductor, the screened scattering potential and quasiparticle lifetime are found to be very different in the superconducting and normal states. We apply the result to explain the appearence of a sharp peak in the ARPES spectra in some cup rates below the superconducting transition. The charged Bose gas model for the upper critical field in the cuprates is extended to explain the crossing point in the curves of induced magnetization divided by the square root of field against temperature in the less anisotropic cuprates. This model has already been shown to provide a parameter-free expression for Te in a wide range of cuprates.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.392309  DOI: Not available
Share: