Use this URL to cite or link to this record in EThOS:
Title: On the construction of invariant tori and integrable Hamiltonians
Author: Kaasalainen, Mikko K. J.
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 1994
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
The main principle of this thesis is to employ the geometric representation of Hamiltonian dynamics: in a broad sense, we study how to construct, in phase space, geometric structures that are related to a dynamical system. More specifically, we study the problem of constructing phase-space tori that are approximate invariant tori of a given Hamiltonian; also, using the constructed tori, we define an integrable Hamiltonian closely approximating the original one. The methods are generally applicable; as examples, we use gravitational potentials that are of interest in stellar dynamics. First, we construct tori for box and loop orbits in planar, barred potentials, thus demonstrating the applicability of the scheme to potentials that have more than one major orbit family. Also, we show that, in general, the construction scheme needs two types of canonical transformations together: point transformations as well as those expressed by generating functions. To complete the construction scheme, we show how to furnish the tori with consistent coordinate systems, i.e., how to recover the angle variables of a torus labelled by its actions. Next, the developed methods are employed in creating invariant phase-space tori in nonintegrable potentials supporting minor-orbit families. These tori are used to define an integrable Hamiltonian H0, and a modified form of the standard Hamiltonian perturbation theory is then used to demonstrate that a minor-orbit family can be treated as one made up of orbits trapped by a resonance of H0. Finally, we generalize the scheme further by constructing tori in time-reversal asymmetric Hamiltonians (by considering the motion in a rotating frame of reference), and study the transition from locally contained stochasticity to global chaos. Using both near-integrable 'laboratory' Hamiltonians and those for which we construct tori, we investigate the transition in the light of the resonance overlap criterion.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Hamiltonian systems ; Torus (Geometry) Astronomy Physics