Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.385751
Title: Aero engine life evaluated for combined creep and fatigue, and extended by trading-off excess thrust
Author: Wu, Fuh-Eau
Awarding Body: Cranfield University
Current Institution: Cranfield University
Date of Award: 1994
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
This thesis investigates the concept of thrust rating as a means towards reducing the life cycle costs of engine ownership. Towards this end, this thesis has discussed the concept of thrust rating, developed computer programs for mechanical load type failures, which include creep, LCF, and combinations thereof, and conducted simulations of improving life usage and reducing life cycle costs. A study was performed on a military engine, under an original design mission mix, that showed significant gains in creep-LCF life of the HPT blade could be achieved, especially With the recently proposed and presumably more accurate criterion- ductility exhaustion, by thrust rating. The savings were expressed in terms of an approximate reduced life accumulation rates and life cycle costs. The net result was a 50% increase in creep-LCF life with a savings of $50.4 million. These calculations were based on a Feet of 300 engines having the designed lifetime of 8,000 operating hours per engine. Throughout the thesis, mention is also made of employing the thrust rating concept on other engines. To this end, the thesis will also give a blueprint for conducting a feasibility study to employ thrust rating as a maintenance tool. In addition to the technical aspects, the role of maintenance and aircraft operations policy will also be studied to determine the interrelationships that exist between thrust rating technology and its practical application.
Supervisor: Singh, R. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.385751  DOI: Not available
Keywords: Jet turbine engines & gas turbine engines Jet engines Gas-turbines Materials Biodeterioration
Share: