Use this URL to cite or link to this record in EThOS:
Title: Tetrahydrobiopterin metabolism in dementia
Author: Anderson, Julia M.
Awarding Body: Aston University
Current Institution: Aston University
Date of Award: 1987
Availability of Full Text:
Access through EThOS:
Access through Institution:
The aim of this study was to establish levels of the enzymes involved in tetrahydrobiopterin (BH4) metabolism in human and rat brain preparations; to determine whether BH4 metabolism is altered in dementia, particularly in relation to senile dementia of the Alzheimer type (SDAT); and to examine the effect of aluminium on BH4 metabolism. Overall BH4 synthesis and dihydropteridine reductase (DHPR) activity were greater in the locus coeruleus than in the neocortex of elderly subjects. Sepiapterin reductase and DHPR activity showed a linear correlation with age in the temporal cortex. DHPR activity in the frontal cortex was relatively constant until the mid 60s and then fell with age. Overall BH4 synthesis showed a non-significant decline in temporal cortex and was significantly reduced in locus coeruleus preparations from SDAT subjects compared to control subjects. As DHPR, sepiapterin reductase and GTP cyclohydrolase activity were unaltered in SDAT we suggested that there is a lesion on the biosynthetic pathway between dihydroneopterin in triphosphate and BH4 in SDAT, possibly at the level of 6-pyruvoyl tetrahydropterin synthase. DHPR activity and BH4 synthesis capacity were unaltered in temporal cortex preparations from Huntingdon's disease subjects indicating that the defect in BH4 metabolism in SDAT is specific to the disease process and not a secondary consequence of dementia. The implications of altered BH4 metabolism in ageing and dementia are discussed. BH4 metabolism was examined in temporal and frontal cortex preparations from 4 subjects who had received peritoneal dialysis treatment. All patients had elevated serum aluminium levels. The data suggests that aluminium may inhibit DHPR activity in the frontal cortex resulting in diminished BH4 levels in the cells which leads to a compensatory increase in the activity of the biosynthetic pathway. Aluminium reversibly inhibited sepiapterin reductase activity in rat brain preparations but did not alter sepiapterin reductase activity in vivo. Overall BH4 synthesis and OTP cyclohydrolase activity were not affected by aluminium in vitro. The biosynthetic pathway was unaltered in rat brain preparations from animals receiving aluminium orally compared to control animals. DHPR activity was unaltered or increased in rat brain preparations from aluminium treated rats compared to the control group.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Phd
EThOS ID:  DOI: Not available
Keywords: Molecular Biology Biochemistry Medicine