Use this URL to cite or link to this record in EThOS:
Title: Mechanics of rolling continuously cast stock
Author: Greening, Paul J.
Awarding Body: Aston University
Current Institution: Aston University
Date of Award: 1987
Availability of Full Text:
Access through EThOS:
Access through Institution:
A review of published literature was made to establish the fundamental aspects of rolling and allow an experimental programme to be planned. Simulated hot rolling tests, using pure lead as a model material, were performed on a laboratory mill to obtain data on load and torque when rolling square section stock. Billet metallurgy and consolidation of representative defects was studied when modelling the rolling of continuously cast square stock with a view to determining optimal reduction schedules that would result in a product having properties to the high level found in fully wrought billets manufactured from large ingots. It is difficult to characterize sufficiently the complexity of the porous central region in a continuously cast billet for accurate modelling. However, holes drilled into a lead billet prior to rolling was found to be a good means of assessing central void consolidation in the laboratory. A rolling schedule of 30% (1.429:1) per pass to a total of 60% (2.5:1) will give a homogeneous, fully recrystallized product. To achieve central consolidation, a total reduction of approximately 70% (3.333:1) is necessary. At the reduction necessary to achieve consolidation, full recrystallization is assured. A theoretical analysis using a simplified variational principle with experimentally derived spread data has been developed for a homogeneous material. An upper bound analysis of a single, centrally situated void has been shown to give good predictions of void closure with reduction and the reduction required for void closure for initial void area fractions 0.45%. A limited number of tests in the works has indicated compliance with the results for void closure obtained in the laboratory.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Phd
EThOS ID:  DOI: Not available
Keywords: Production and Manufacturing Engineering ; Mechanical Engineering Manufacturing processes Metallurgy