Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378559
Title: The performance of cement stabilised minestone
Author: Thomas, m. D. A.
Awarding Body: Aston University
Current Institution: Aston University
Date of Award: 1986
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
This study is concerned with the durability of cement stabilised minestone (CSM). Minestone is dominated by the clay-bearing mudrocks and shales of the Coal Measures. Consequently, engineering problems are often encountered due to the likelihood of these rocks undergoing volume change and degradation when exposed to fluctuations in moisture content. In addition, iron sulphides (chiefly pyrite) are frequently present in minestone as diagenetic minerals which on excavation have the potential to oxidise forming sulphate minerals. The oxidation of sulphides may in itself contribute to volume increase in pyritic rocks and sulphate minerals may combine with the products of cement hydration to produce further expansion. The physical and chemical properties of a wide range of minestones are determined and attempts are made to correlate these with the engineering performance of cement stabilised specimens subjected to short-term immersion in water. Criteria, based on these raw material indices are proposed with a view to eliminating minestones which are unsuitable. A long-term durability study is also described. In this, the geochemical stability of pyrite in CSM was examined together with the role played by the sulphur bearing mineralogy in determining the engineering performance of CSM's exposed to conditions of increased moisture availability. The nature of a number of disrupted CSM pavements which have been examined are also discussed.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.378559  DOI: Not available
Keywords: Civil Engineering Composite materials Geology Mineralogy Sedimentology Civil engineering
Share: