Use this URL to cite or link to this record in EThOS:
Title: Control of proliferation in the rat thymus
Author: Wadhwa, Meenu
Awarding Body: Aston University
Current Institution: Aston University
Date of Award: 1987
Availability of Full Text:
Access through EThOS:
Access through Institution:
Quiescent rat thymocytes were stimulated to divide by a variety of agents. One such mitogen was the neurotransmitter acetylcholine which exhibited a biphasic action. Interaction with low affinity nicotinic receptors was linked with an obligatory requirement for magnesium ions whereas combination with high affinity muscarinic receptors induced mitosis only if calcium ions were present in the medium. Binding of acetylcholine to its muscarinic receptor enhanced calcium influx and increased intracellular calcium levels causing calmodulin activation, a necessary prelude to DNA synthesis and mitosis. Nicotinic receptor activation may be associated with a magnesium influx and stimulation of cells in a calmodulin-independent fashion. Parathyroid hormone and its analogues exhibited only a monophasic mitogenic action. This response was linked to calcium influx, a rise in cytosolic calcium and calmodulin activation. Parathyroid hormone did not stimulate adenylate cyclase in thymocytes and decreased cellular cyclic AMP concentrations. Picomolar amounts of interleukin-2 (IL-2) also stimulated division in thymocytes derived from 3-month old rats by binding to high affinity receptors. The response in thymocytes from newborn and foetal animals was greater reflecting the larger proportion of cells bearing receptors at this age. The mitogenic effect of IL-2 was abolished by a monoclonal antibody directed against the IL-2 receptor. Injections of IL-2 itself or the administration of IL-2 secreting activated syngeneic spleen cells also stimulated proliferation of both thymus and bone marrow cells in vivo. Likewise immunisation with pertussis toxin, which enhances endogenous IL2 production, also increased mitosis in these tissues. Calcium influx, increased cytosolic Ca2+ levels and calmodulin activation are associated features of the mitogenic action of IL-2. Interleukin-1 was also found to be mitogenic in thymic lymphocyte cultures. The responses to this mitogen and to parathyroid hormone and acetylcholine were not inhibited by the anti-IL2 receptor antibody suggesting that the thymic lymphocyte bears discrete receptors for these agents. Subtle interactions of hormones, neurotransmitters and interleukins may thus contribute to the turnover and control of lymphoid cells in the thymus and perhaps bone-marrow.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Phd
EThOS ID:  DOI: Not available
Keywords: Molecular Biology Molecular biology Cytology Genetics Human anatomy