Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376465
Title: The effects of notch parameters and crack tip plasticity on AC potential drop used in high frequency crack monitoring
Author: Walker, Anthony E.
Awarding Body: Sheffield City Polytechnic
Current Institution: Sheffield Hallam University
Date of Award: 1987
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
The ACPD method is probably the most versatile of all the commercially available NDE techniques. However as applications of such systems increase so does the awareness of serious limitations in present ACPD knowledge. In particular high local crack and notch tip strains can have a marked effect on ACPD response leading to substantial errors in estimates of crackdepth and growth rates. In the present study an investigation has been undertaken into the influence of elastic/plastic notch tip strain on the response of ACPD crack monitoring systems. Experimental work has been undertaken to produce data on the ACPD response observed in two magnetically contrasting materials (EN1A mild steel, NE8 aluminium alloy) using a series of V and U notched bend specimens. An extensive elastic/plastic finite element analysis was conducted to accurately determine the different notch tip strain fields for both materials. A fundamental study was also undertaken into the influence of strain on the electrical resistivity and relative magnetic permeability, the two material parameters governing the ACPD response. The information obtained from the investigations together with results from the FE analysis has made it possible to understand and quantify the influence of elastic/plastic deformation on ACPD response. An electric field model has been successfully developed to explain and predict the effect of increasing strain on the ACPD response in materials where the skin effect is strong. Results have also shown the inapplicability of the compensation method of crack monitoring when levels of plasticity are appreciable and an alternative method has been proposed.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.376465  DOI: Not available
Keywords: Crack monitoring system
Share: