Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369923
Title: Specific heat measurements on chevrel phase materials exhibiting coexistence of superconductivity and magnetism
Author: Leigh, Nigel Royston
Awarding Body: Durham University
Current Institution: Durham University
Date of Award: 2001
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
A probe for measuring the specific heat of superconductors at low temperatures and in high magnetic fields has been built and commissioned. The probe has been tested using the relaxation method on samples of copper and the accuracy of the data is 1.3 % between 5 K and 30 K, data taken using the long range pulse method has a resolution of 10 mK. Specific heat measurements have been performed on members of the series (Pb(_1)-(_x))Cu(_1.8x)Mo(_6)S(_8), (Sn(_1-x))Eu(_x)Mo(_6)S(_8) and (Pb(_1-x)M(_x))Mo(_6)S(_8) where M = Gd and Eu, from 3 K up to 30 K and in magnetic fields up to 15 T. Additional results from resistivity, susceptibility, magnetisation. X-ray diffraction, transmission electron microscopy and electron dispersive-ray measurements are also presented. These data have been compared to results from other authors and are analysed in terms of the BCS and GLAG theories of superconductivity and the magnetic properties of these materials. The mean field model has been used to calculate numerically the magnetic contribution to the specific heat (cm) of both ferromagnetic and antiferromagnetic systems as a function of temperature and applied field both above and below the ordering temperature. In addition an approximate analytic form for the magnetisation has been used to calculate Cm above the ordering temperature. Expressions have been derived for the saturation value of the peak in C(_m): C(^sat)(_m) = 1.1245n(_cell)RJI(J+1) and the temperature dependence of the peak with applied field ȡ(μ(_o)H(_ext))/ȡT(_peak)=6.540/g(_J)(J+1). They allow the simple calculation of the values of J and g(_J)(J + 1) from specific heat data. The magnetic contribution to the specific heat of the samples (Sn(_0.65)Eu(0.35)Mo(_6)S(_8)) and (Sn(0.50)Eu(_0.50)Mo(_6)S(_8)) have been modelled using these calculations and excellent agreement is found by considering the magnetic ions as free ions. The sample is accurately modelled by including an additional minority phase (Gd(_2)S(_3)). The approximate expressions have also been used to analyse data on high temperature superconductors producing values of J and g(_J)}{J + 1) consistent with a doublet ground state. The properties of Chevrel phase materials have been determined as a function of doping level. The critical temperature is degraded by doping but an increase in the critical current density is observed in the series (Pb(_1-x)Cu(_1-8x)Mo(_6)S(_8) for very low levels of doping. Increases of up to 28 % in the upper critical field, that are probably due to the compensation effect and an increase in the normal state resistivity, are also observed in the series (Sn(_1-x)Eu(_x)Mo(_6)S(_8)) at high levels of doping and in the series (Pb(_1-x)Gd(_x)Mo(_6)s(_8) for low levels of doping.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.369923  DOI: Not available
Keywords: SPECIFIC HEAT; SUPERCONDUCTORS; TEMPERATURE DEPENDENCE; ELECTRIC CONDUCTIVITY; MAGNETIZATION; X-RAY DIFFRACTION; MAGNETIC SUSCEPTIBILITY; TRANSMISSION ELECTRON MICROSCOPY; TIN COMPOUNDS; MOLYBDENUM SULFIDES; LEAD COMPOUNDS; RARE EARTH COMPOUNDS Solid state physics
Share: