Use this URL to cite or link to this record in EThOS:
Title: Deposition and characterisation of nickel oxide based coatings for advanced glazing applications
Author: McMeeking, Graham Donald
ISNI:       0000 0001 3625 836X
Awarding Body: Oxford Brookes University
Current Institution: Oxford Brookes University
Date of Award: 1997
Availability of Full Text:
Access through EThOS:
Access through Institution:
This thesis is a comparative study of nickel oxide based thin films for use as a counter electrode in a variable transmittance electrochromic device. Coatings have been prepared using anodic electrodeposition, colloidal precipitation and radio frequency (r.f.) sputtering. Systematic studies of the effect of deposition process parameters on optical and electrochromic properties of such films have been undertaken. Optimum conditions for the deposition of coatings deposited by colloidal and anodic deposition have been determined. A novel process for the colloidal deposition of electrochromic a-Ni(OH)2 coatings using a simple one dip process is reported. Also the electrochromic properties of coatings anodically deposited from aqueous solutions containing NiS04 and NH40H were improved by the addition of the non-ionic surfactant polyoxyethylene sorbitan monolaurate. Spectroscopic and electrochemical analytical techniques were used to identify the chemical composition of the coloured and bleached states. It was found using Fourier transform infra-red spectrophotometry (FTIR) that coatings deposited by anodic and colloidal deposition contained f3-Ni(OH)2 and a-Ni(OH)2 respectively in the as-deposited and transparent states. For coatings deposited by both techniques 13 or y-NiOOH was detected in the coloured state using FTIR. Using Raman spectroscopy, y-NiOOH was detected in the coloured state for coatings deposited by anodic deposition from solutions containing the additive polyoxyethylene sorbitan monolaurate. I3-Ni(OH)2 was also detected in the transparent state of r.f. sputtered coatings that were electrochemically cycled in 1M KOH(aq). Using cyclic voltammetry the oxidation of nickel hydroxide to the oxyhydroxide was detected during colouration for coatings produced using anodic electrodeposition, colloidal precipitation and r.f. sputtering (after cycling sputtered films for 1 hour in 1M KOH(aq)). This information has been compared for films prepared using the different deposition techniques to enable the respective colouration mechanisms to be elucidated. Prototype electrochromic devices have been constructed and their performances assessed. It can be concluded that nickel oxide based coatings can be used as suitable counter electrodes for hydrated electrochromic devices.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Electrochromic; Smart windows; Thin films Solar energy Solid state physics Coatings Paint