Use this URL to cite or link to this record in EThOS:
Title: Investigations into the design of a wheelchair-mounted rehabilitation robotic manipulator
Author: Prior, Stephen D.
Awarding Body: Middlesex University
Current Institution: Middlesex University
Date of Award: 1993
Availability of Full Text:
Access through EThOS:
Access through Institution:
This research describes the steps towards the development of a low-cost wheelchair-mounted manipulator for use by the physically disabled and elderly. A detailed review of world rehabilitation robotics research has been conducted, covering fifty-six projects. This identified the main areas of research, their scope and results. From this review, a critical investigation of past and present wheelchair-mounted robotic arm projects was undertaken. This led to the formulation of the key design parameters in a final design specification. The results of a questionnaire survey of fifty electric wheelchair users is presented, which has for the first time established the needs and abilities of this disability group. An analysis of muscle type actuators, which mimic human muscle, is presented and their application to robotics, orthotics and prosthetics is given. A new type of rotary pneumatic muscle actuator, the flexator, is introduced and through extensive testing its performance characteristics elucidated. A review of direct-drive rotary pneumatic, hydraulic and electrical actuators has highlighted their relative performance characteristics and has rated their efficiency in terms of their peak torque to motor mass ratio, Tp/MM. From this, the flexator actuator has been shown to have a higher Tp/MM ratio than most conventional actuators. A novel kinematic arrangement is presented which combines the best features of the SCARA and vertically articulated industrial robot geometries, to form the 'Scariculated' arm design. The most appropriate actuator for each joint of this hybrid manipulator was selected, based on the criteria of high Tp/MM ratio, low cost, safety and compatibility. The final design incorporates conventional pneumatic linear double-acting cylinders, a vane type rotary actuator, two dual flexator actuators, and stepping motors for the fme control of the wrist/end effector. An ACSL simulation program has been developed which uses mass flow rate equations, based on one-dimensional compressible flow theory and suppressed critical pressure ratios, to simulate the dual flexator actuator. Theoretical and empirical data is compared and shows a high degree of correlation between results. Finally, the design and development work on two prototypes is discussed. The latest prototype consists of a five-axis manipulator whose pneumatic joints are driven by pulse width modulated solenoid valves. An 8051 microprocessor with proportional error feedback modilles the mark to space ratio of the PWM signal in proportion to the angular error of the joints. This enables control over individual joint speeds, reprogrammable memory locations and position monitoring of each joint. The integration of rehabilitation robotic manipulators into the daily lives of the physically disabled and elderly will significantly influence the role of personal rehabilitation in the next century.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Robotics Robotics Biomedical engineering Biochemical engineering Human engineering