Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358947
Title: Hydrophobicity in polysaccharide gelation
Author: Jones, Amanda Kay
Awarding Body: Cranfield University
Current Institution: Cranfield University
Date of Award: 1992
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
The role of hydrophobic substituents on the gelation mechanism of highly esterified pectin and the cellulose derivatives methylcellulose and hydroxypropylmethylcellulose (HPMC) has been explored by monitoring the behaviour of the amphiphilic polysaccharides in varying combinations of an ethylene glycoVwater solvent. The gelling ability (mechanical spectroscopy, visual observation) of very highly esterified (- 100%) pectin in high concentrations of ethylene glycol (>60%) is greatly reduced, however, the polymer still undergoes conformational ordering (CD, OR). A model for gel formation involving a two stage process has been proposed, comprising adoption of the ordered structure stabilised by hydrogen bonding between OH groups of contiguous polysaccharide chains, followed by (or coincident with) aggregation of the ordered sequences by 'hydrophobic' clustering of the fundamental structural subunits to form the three dimensional gel network. It has been found that ethylene glycol promotes the fIrst stage (ordering) but is antagonistic to the second (aggregation). The reversibility (mechanical spectroscopy) of the thermo-gelling cellulose derivatives can be largely abolished in the presence of ethylene glycol (40% for methylcellulose, 10% for HPMC), attributed to solubilisation of the proposed ordered 'bundle' structure at low temperatures removing the enthalpic advantage (DSC) of gel melting. The increased sensitivity of HPMC to modification of the solvent environment is due to the presence of the polar hydroxypropyl substituent causing an inceptive destabilisation of the 'bundle' structure. It is suggested that gelation is driven by the entropic advantage of melting-out 'cages' of structured water surrounding the hydrophobic groups giving rise to intermolecular 'hydrophobic' aggregation.
Supervisor: Morris, E. R. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.358947  DOI: Not available
Keywords: Pectin gels Biochemistry Food
Share: