Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.357482
Title: Towards an improved ocular drug delivery system
Author: Bright, A. M.
Awarding Body: Aston University
Current Institution: Aston University
Date of Award: 1992
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
The ultimate aim of this project was to design new biomaterials which will improve the efficiency of ocular drug delivery systems. Initially, it was necessary to review the information available on the nature of the tear fluid and its relationship with the eye. An extensive survey of the relevant literature was made. There is a common belief in the literature that the ocular glycoprotein, mucin, plays an important role in tear film stability, and furthermore, that it exists as an adherent layer covering the corneal surface. If this belief is true, the muco-corneal interaction provides the ideal basis for the development of sustained release drug delivery. Preliminary investigations were made to assess the ability of mucin to adhere to polymer surfaces. The intention was to develop a synthetic model which would mimic the supposed corneal/mucin interaction. Analytical procedures included the use of microscopy (phase contrast and fluorescence), fluorophotometry, and mucin-staining dyes. Additionally, the physical properties of tears and tear models were assessed under conditions mimicking those of the preocular environment, using rheological and tensiometric techniques. The wetting abilities of these tear models and opthalmic formulations were also investigated. Tissue culture techniques were employed to enable the surface properties of the corneal surface to be studied by means of cultured corneal cells. The results of these investigations enabled the calculation of interfacial and surface characteristics of tears, tear models, and the corneal surface. Over all, this work cast doubt on the accepted relationship of mucin with the cornea. A corneal surface model was designed, on the basis of the information obtained during this project, which would possess similar surface chemical properties (i.e. would be biomimetic) to the more complex original. This model, together with the information gained on the properties of tears and solutions intended for ocular instillation, could be valuable in the design of drug formulations with enhanced ocular retention times. Furthermore, the model itself may form the basis for the design of an effective drug-carrier.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.357482  DOI: Not available
Keywords: Applied Chemistry ; Chemical Engineering Pharmacology Human physiology
Share: