Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356350
Title: Adhesive bonding of aluminium
Author: Maddison, Anthony
Awarding Body: University of Aston in Birmingham
Current Institution: Aston University
Date of Award: 1983
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
Adhesive bonding of aluminium is widely used in the aerospace industry. High initial bood strengths can be obtained, but bond failure occurs atter prolonged exposure to humid enviroments. The thesis contains details ot a test procedure which has been designed and developed for the assessment of different alloys, pretreatments, and adhesives, which will give adhesively bonded aluminium joints of high strength coupled with long term durability. The test involves assembly of lap shear specimens in a precision jig using 250 ballotini spacers in the adhesive to control the bond line thickness. The test is modified by drilling three accurately located holes through the bonded area after assembly of the joint and curing of the adhesive. Further important features at the test, such as fillet control, are detailed. The test was assessed, modified and developed to give a reliable and reproducible method which would discriminate amongst different bonding systems after exposure to humid test environments. This is the first test to have achieved the discrimination necessary for short term assessment of bond systems where long term durability is required. Even better discrimination has been obtained by applying stress in a stress humidity test. Having established accurate, reliable and discriminating test methods they were used to study the durability of structural epoxy adhesive bonds to aluminium as a function of alloy, pretreatment, adhesive and environment. It was established that the long term durability or adhesively bonded aluminium was directly related to the infulence of water migrating within the adhesive. Pretreatments differed in their ability to prevent hydration of the aluminium oxide by the water absorbed within the adhesive.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.356350  DOI: Not available
Keywords: Production Processes Adhesives Adhesives Metallurgy
Share: