Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.354657
Title: Production of phenol-formaldehyde resin composites
Author: Tsiaparis, Michael
Awarding Body: University of Aston in Birmingham
Current Institution: Aston University
Date of Award: 1983
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
The main objective of this work was to examlne the various stages of the production of industrial laminates based on phenol-formaldehyde resins, with a view of suggesting ways of improving the process economics and/or the physical properties of the final product. Aspects of impregnation, drying, and lamination were investigated. The resins used in all experiments were ammonia-catalysed. Work was concentrated on the lamination stage since this is a labour intensive activity. Paper-phenolic lay-ups were characterised in terms of the temperatures experienced during cure, and a shorter cure-cycle is proposed, utilising the exothermic heat produced during pressing of 25.5 mm thick lay-ups. Significant savings in production costs and improvements in some of the physical properties have been achieved. In particular, water absorption has been reduced by 43-61%. Work on the drying stage has shown that rapid heating of the wet impregnated substrate results in resin solids losses. Drying at lower temperatures by reducing the driving force leads to more resin (up to 6.5%) being retained by the prepregs and therefore more effective use of an expensive raw material. The impregnation work has indicated that residence times above 6 seconds in the varnish bath enhance the insulation resistance of the final product, possibly due to improved resin distribution and reduction in water absorption. In addition, a novel process which involves production of laminates by in situ polymerisation of the phenolic resin on the substrate has been examined. Such a process would eliminate the solvent recovery plant - a necessary stage in current industrial processes. In situ polymerisation has been shown to be chemically feasible.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.354657  DOI: Not available
Keywords: Chemical Engineering Plastics Plastics
Share: