Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340972
Title: Semi-active damping of heavy vehicles
Author: Kitching, Kevin John
ISNI:       0000 0001 3600 5872
Awarding Body: University of Cambridge
Current Institution: University of Cambridge
Date of Award: 1997
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Restricted access.
Access from Institution:
Abstract:
This thesis is concerned with the use of semi-active suspensions in heavy vehicles to improve ride and reduce road damage. An introduction into the subject is given in chapter 1 and a review of the relevant literature is presented at the beginning of each main chapter. The development and modelling of a prototype, continuously variable semi-active damper for heavy vehicles is described in chapter 2. A proportional valve is used to generate the variable damping coefficient and the detrimental effects of the oil flow forces acting on the valve spool are studied. The force tracking performance of the damper is then examined for simple input conditions and the compliance of the hydraulic fluid is found to have a strong influence upon the response of the damper. The different vehicle and road models used in the thesis are described in chapter 3. In chapter 4, the performance of the prototype damper is investigated under realistic operating condition using a Hardware-in-the-Loop (HiL) test rig, with a single wheel station vehicle model. The prototype damper displays a phase lag of approximately 20ms between the demanded and achieved damping force. The semi-active suspension is found to be most effective in reducing the body accelerations relative to an optimum non-linear passive suspension. A theoretical investigation into the reduction of road damage through the use of active and semi-active suspensions is described in chapter 5. The relative performance of four linear state feedback control strategies is examined. The potential for reducing road damage by using a controller which directly regulates various measures of road damage is also studied. Significant improvements are predicted for the three controllers which assume the road inputs to the vehicle are correlated. However, these benefits are shown to diminish as the vehicle speed is reduced. It is concluded that the control of the dynamic tyre forces is an effective means by which to regulate road damage. Theoretical predictions of the benefits from wheelbase preview control are measured experimentally in chapter 6, using the prototype semi-active damper in a half-car HiL rig with a planar two axled heavy vehicle model. The benefits of preview control using the prototype semi-active damper are found to be less than theoretically possible due to the phase lag between the demanded and achieved damping force of the prototype damper. The final section of chapter 6 shows that the performance of the prototype damper can be improved further by having a theoretical simulation running ahead of the HiL vehicle. The theoretical simulation is used to predict the demanded damper force for the HiL vehicle and thereby compensate for the phase lag in the prototype damper. Conclusions and recommendations for further work are presented in chapter 7.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.340972  DOI:
Keywords: Suspensions; Damper design; Road damage; Lorries
Share: