Use this URL to cite or link to this record in EThOS:
Title: Design optimization of permanent magnet actuators
Author: Widdowson, G. P.
Awarding Body: University of Sheffield
Current Institution: University of Sheffield
Date of Award: 1992
Availability of Full Text:
Access through EThOS:
Access through Institution:
This study describes the design optimization of permanent actuators, of both rotary and linear topologies. Parameter scanning, constrained single and multi-criterion optimization techniques are developed, with due emphasis on the efficient determination of optimal designs. The modelling of devices by non-linear lumped reluctance networks is considered, with particular regard to the level of discretization required to produce accurate global quantities. The accuracy of the lumped reluctance technique is assessed by comparison with non-linear finite element analysis. Alternative methods of force/torque calculation are investigated, e.g. Lorentz equation, Virtual Work, and Maxwell Stress Integration techniques, in order to determine an appropriate technique for incorporation in a non-linear iterative optimization strategy. The application of constrained optimization in a design environment is demonstrated by design studies and experimental validation on selected prototype devices of both topologies.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Control systems & control theory Automatic control Control theory